Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/20.500.12872/376
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorNieto Chaupis, Huber
dc.coverage.temporal3 June 2015 through 5 June 2015
dc.date.accessioned2019-08-26T02:27:19Z
dc.date.available2019-08-26T02:27:19Z
dc.date.issued2015-06
dc.identifier.citationNieto Chaupis, H. (Junio, 2015). Predictive Control of the mineral particle size with kernel-reduced Volterra models in a balls mill grinding circuit. En 24th International Symposium on Industrial Electronics (ISIE), Brazil.en_PE
dc.identifier.urihttp://repositorio.uch.edu.pe/handle/uch/376
dc.identifier.urihttp://dx.doi.org/10.1109/ISIE.2015.7281453
dc.identifier.urihttps://ieeexplore.ieee.org/document/7281453
dc.description.abstractWe report the results of the application of the Model-based Predictive Control (MPC) algorithm for a 3×3 MIMO balls mill grinding system by using computational simulation and Monte Carlo data generation. For this purpose, the system has been identified through a reduced scheme of Volterra formalism by which the proposed methodology has required to employ up to 20 parameters. Subsequently, the model enters in a framework of MPC which targets to control the particle size, one of the most important output variables in this study. According to the simulation results the system identification error is of order of 3%, whereas the MPC scheme applied to control a desired set-point namely 75 %-200mesh is accompanied by a deviation of ±5%. Since the balls mill grinding circuit is a nonlinear system, it is expected that the system might collapse as consequence of the accumulated circulant load. The simulations have predicted that the MPC algorithm running with a Volterra-based model might surpass situations of stops and alarms system, even in those cases where the system is attacked by unexpected disturbs and random events.en
dc.description.sponsorshipFederal University of Mato Grosso do Sul (UFMS);Federal University of Rio de Janeiro (UFRJ);State University of Rio de Janeiro (UERJ);The Institute of Electrical and Electronics Engineers Industrial Electronics Society (IEEE IES)
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_PE
dc.relationinfo:eu-repo/semantics/articleen_PE
dc.relation.isPartOfIEEE International Symposium on Industrial Electronics
dc.rightsinfo:eu-repo/semantics/embargoedAccessen_PE
dc.sourceRepositorio Institucional - UCHen_PE
dc.sourceUniversidad de Ciencias y Humanidadesen_PE
dc.subjectAlgorithmsen
dc.subjectGrinding (machining)en
dc.subjectIndustrial electronicsen
dc.subjectModel predictive controlen
dc.subjectMonte Carlo methodsen
dc.subjectParticle sizeen
dc.subjectPredictive control systemsen
dc.subjectComputational simulationen
dc.subjectMill-grindingen
dc.subjectMineral particlesen
dc.subjectModel based predictive controlen
dc.subjectMonte Carlo dataen
dc.subjectOutput variablesen
dc.subjectPredictive controlen
dc.subjectVolterra modelen_
dc.subjectBall millsen
dc.titlePredictive Control of the mineral particle size with kernel-reduced volterra models in a balls mill grinding circuiten_PE
dc.typeinfo:eu-repo/semantics/conferenceObjecten_PE
dc.identifier.doi10.1109/ISIE.2015.7281453en_PE
dc.identifier.journalIEEE International Symposium on Industrial Electronics, ISIEen_PE
dc.identifier.scopus2-s2.0-84947230914
Aparece en las colecciones: Conference Paper

Ficheros en este ítem:
No hay ficheros asociados a este ítem.


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.