Por favor, use este identificador para citar o enlazar este ítem:
http://hdl.handle.net/20.500.12872/330
Título : | Generalization of the classical delay-and-sum technique by using nonlinear dirac-delta functions |
Autor : | Nieto Chaupis, Huber |
Palabras clave : | Beamforming Monte Carlo methods Beamforming technique Closed-form expression Delay and sum beamforming Delay and sums Dirac delta function Input functions Model parameters Strong nonlinearity Delta functions |
Fecha de publicación : | ago-2017 |
Editorial : | Institute of Electrical and Electronics Engineers Inc. |
Citación : | Nieto Chaupis, H. ((Agosto, 2017). Generalization of the classical delay-and-sum technique by using nonlinear dirac-delta functions. En XXIV International Conference on Electronics, Electrical Engineering and Computing, Perú. |
Resumen : | We presented a generalization of the delay-and-sum beamforming based on the Dirac-Delta functions but with nonlinear argument. For this end, a closed-form expression of the beampattern mathcal{B}(r)=\sum\nolimits-{k,q}w(k,q,r)x(k,q,r) with r = r(θ), was derived. This expression is computationally simulated through an algorithm that includes integer-order Bessel input functions and random noise. The 4M+N model parameters provided by the Dirac-Delta method are extracted by using a Monte-Carlo-like step which selects the best values for B(r) minimizing the Monte-Carlo error for Δθ = 0.5% for the case of beam response of θ0=30 degrees. These results might sustain the fact that beamforming techniques can use Dirac-Delta functions for modeling arrival signal even in those cases where strong nonlinearity is involved. |
URI : | http://repositorio.uch.edu.pe/handle/uch/330 http://dx.doi.org/10.1109/INTERCON.2017.8079636 https://ieeexplore.ieee.org/abstract/document/8079636 |
Aparece en las colecciones: | Conference Paper |
Ficheros en este ítem:
No hay ficheros asociados a este ítem.
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.