Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/20.500.12872/330
Título : Generalization of the classical delay-and-sum technique by using nonlinear dirac-delta functions
Autor : Nieto Chaupis, Huber
Palabras clave : Beamforming
Monte Carlo methods
Beamforming technique
Closed-form expression
Delay and sum beamforming
Delay and sums
Dirac delta function
Input functions
Model parameters
Strong nonlinearity
Delta functions
Fecha de publicación : ago-2017
Editorial : Institute of Electrical and Electronics Engineers Inc.
Citación : Nieto Chaupis, H. ((Agosto, 2017). Generalization of the classical delay-and-sum technique by using nonlinear dirac-delta functions. En XXIV International Conference on Electronics, Electrical Engineering and Computing, Perú.
Resumen : We presented a generalization of the delay-and-sum beamforming based on the Dirac-Delta functions but with nonlinear argument. For this end, a closed-form expression of the beampattern mathcal{B}(r)=\sum\nolimits-{k,q}w(k,q,r)x(k,q,r) with r = r(θ), was derived. This expression is computationally simulated through an algorithm that includes integer-order Bessel input functions and random noise. The 4M+N model parameters provided by the Dirac-Delta method are extracted by using a Monte-Carlo-like step which selects the best values for B(r) minimizing the Monte-Carlo error for Δθ = 0.5% for the case of beam response of θ0=30 degrees. These results might sustain the fact that beamforming techniques can use Dirac-Delta functions for modeling arrival signal even in those cases where strong nonlinearity is involved.
URI : http://repositorio.uch.edu.pe/handle/uch/330
http://dx.doi.org/10.1109/INTERCON.2017.8079636
https://ieeexplore.ieee.org/abstract/document/8079636
Aparece en las colecciones: Conference Paper

Ficheros en este ítem:
No hay ficheros asociados a este ítem.


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.