Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/20.500.12872/322
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorNieto Chaupis, Huber
dc.coverage.temporal7 December 2014 through 10 December 2014
dc.date.accessioned2019-08-17T22:05:05Z
dc.date.available2019-08-17T22:05:05Z
dc.date.issued2014-12
dc.identifier.citationNieto Chaupis, H. (Diciembre, 2014). Testing a predictive control with stochastic model in a balls mill grinding circuit. En 11th IEEE/IAS International Conference on Industry Applications, Brazil.en_PE
dc.identifier.urihttp://repositorio.uch.edu.pe/handle/uch/322
dc.identifier.urihttp://dx.doi.org/10.1109/INDUSCON.2014.7059397
dc.identifier.urihttps://ieeexplore.ieee.org/document/7059397/citations#citations
dc.description.abstractIn this paper, the formulation of a stochastic model and its subsequent incorporation into a predictive control of a balls mill grinding circuit, is presented. The apparition of stochastic variables is a consequence of variables interaction by which is impossible to know a well-defined determinist mathematical methodology. Thus, the perceived dynamics is simulated by emphasizing those possible scenarios of alarm situations in where overloading might collapse the system. Under this perception, the system identification is based on probabilities. Once the model is built, it enters in a based-model predictive control by taking into account the hypothesis that the circulant load and water are under interaction each other. Although the quantitative measurement of this interaction might be speculative, it is not discarded that this interaction might be actually the main source of disturbs on the the particle size evolution. The results have shown positive prospects of the proposed methodology as seen in the control system simulations in where the particle size acquires stability. Furthermore the dramatic reduction of alarms events supports the idea that the MPC is still robust even with stochastic formulations.en
dc.description.sponsorshipAxxiom;CEMIG;et al.;Governo de Minas;Ohmini;Yokogawa
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_PE
dc.relationinfo:eu-repo/semantics/articleen_PE
dc.relation.isPartOf11th IEEE/IAS International Conference on Industry Applications, IEEE INDUSCON 2014
dc.rightsinfo:eu-repo/semantics/embargoedAccessen_PE
dc.sourceRepositorio Institucional - UCHen_PE
dc.sourceUniversidad de Ciencias y Humanidadesen_PE
dc.subjectBall millsen
dc.subjectMiningen
dc.subjectGrinding (machining)en
dc.subjectModel predictive controlen
dc.subjectParticle sizeen
dc.subjectPredictive control systemsen
dc.subjectStochastic control systemsen
dc.subjectStochastic systemsen
dc.subjectCirculantsen
dc.subjectControl system simulationsen
dc.subjectMill-grindingen
dc.subjectQuantitative measurementen
dc.subjectStochastic formulationen
dc.subjectStochastic variableen
dc.subjectStochastic modelsen
dc.titleTesting a predictive control with stochastic model in a balls mill grinding circuiten_PE
dc.typeinfo:eu-repo/semantics/conferenceObject
dc.identifier.doi10.1109/INDUSCON.2014.7059397en_PE
dc.identifier.journalIEEE/IAS International Conference on Industry Applications, IEEE INDUSCONen_PE
dc.identifier.scopus2-s2.0-84946686073
Aparece en las colecciones: Conference Paper

Ficheros en este ítem:
No hay ficheros asociados a este ítem.


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.